高级搜索

    不同机器学习模型在流域输沙模拟中的应用与解释

    Application and Interpretation of Various Machine Learning Models in Simulating Watershed Sediment Transport

    • 摘要: 输沙量的测量既费力又费时,因此需要其他技术从更容易测量的变量中提取输沙量信息.利用机器学习模型准确预测窟野河流域的输沙量,并揭示主导输沙过程的关键水文、气象和人类活动因子.研究采用随机森林模型(RF)、支持向量机模型(SVM)、轻量级梯度提升机(LGBM)、极端梯度提升(XGBoost)、Lasso回归和K近邻算法(KNN)6种机器学习模型预测窟野河流域输沙量.进一步基于合作博弈论中沙普利加性解释(Shapley Additive exPlanations,SHAP)的方法,来确定不同影响因素对输沙量预测的重要性和解释性.研究结果表明,6种机器学习模型在输沙量预测方面表现良好,其中RF模型表现出最低的预测误差和最高的效率(RMSE=0.51,R2=0.95,MAE=0.38,NSE=0.94).SHAP分析强调了径流量作为最关键的水文因子,以及坝地、草地、林地和采矿面积等人类活动因子在抑制输沙过程中的显著性,而气象因子的影响相对较小.此外,SHAP分析还揭示了不同因子对输沙量的作用趋势,反映了模型的高解释能力.研究结果显示,机器学习模型在预测河流输沙量方面展现了较高的准确性,尤其在解释复杂的输沙过程方面展现出潜在的优势,为未来的水沙模拟、土壤退化分析及水土保持措施的设计提供了宝贵的科学支持.

       

      Abstract: Measuring sediment transport is both labor-intensive and time-consuming,which necessitates the use of alternative techniques to derive sediment transport information from variables that are more readily measurable.This study aims to leverage machine learning models to accurately predict sediment transport in the Kuye River Basin and to unveil the key hydrological,meteorological,and anthropogenic factors that drive these processes.We employed six machine learning models—Random Forest (RF),Support Vector Machine (SVM),Light Gradient Boosting Machine (LGBM),Extreme Gradient Boosting (XGBoost),Lasso Regression,and K-Nearest Neighbors (KNN)—to predict sediment transport in the Kuye River Basin.Furthermore,we applied the Shapley Additive Explanations (SHAP) approach from cooperative game theory to ascertain the significance and interpretability of various influencing factors on sediment transport prediction.The results show that all six machine learning models performed commendably in predicting sediment transport,with the RF model demonstrating the lowest prediction error and highest efficiency (RMSE=0.51,R2=0.95,MAE=0.38,NSE=0.94).The SHAP analysis highlighted runoff as the most critical hydrological factor and emphasized the significant role of anthropogenic factors such as dam areas,grasslands,forests,and mining areas in mitigating sediment transport,whereas the influence of meteorological factors was comparatively minor.Additionally,the analysis revealed the impact trends of various factors on sediment transport,reflecting the high explanatory power of the models.The findings demonstrate that machine learning models hold significant promise for accurately predicting river sediment transport,particularly in elucidating complex processes.This research provides valuable scientific support for future sediment modeling,soil degradation analysis,and the design of soil and water conservation measures.

       

    /

    返回文章
    返回