高级搜索

    轻量化公路隧道衬砌裂缝检测网络模型研究

    Research on a Lightweight Network Model for Crack Detection in Highway Tunnel Linings

    • 摘要: 针对隧道衬砌裂缝传统检测方法效率低、精度不足的问题,提出了基于深度学习的YOLOv10-CGBN网络.该网络引入Context Guided Block(CG Block)融合局部与全局信息,提高了对细长裂缝的检测精度;在特征融合部分集成Bidirectional Feature Pyramid Network(BiFPN)可实现裂缝特征的跨尺度双向流动,捕捉不同尺度的裂缝信息而无需显著增加计算成本.实验结果表明,自采集数据集上YOLOv10-CGBN的AP50和AP50-95分别为90.5%和67.1%,较基线YOLOv10分别提升5.5%和4.4%,检测精度优于其他单阶段检测网络.模型参数量为2.42M,推理速度达154.4FPS,相比于基线网络参数量极大降低并提高了检测速度,可实现对隧道衬砌裂缝的实时检测.

       

      Abstract: To address low efficiency and insufficient accuracy in traditional tunnel lining crack detection,a YOLOv10-CGBN network based on deep learning is proposed.The architecture incorporated a Context Guided Block (CG Block) that fused local and global information to enhance elongated crack detection accuracy.The integration of Bidirectional Feature Pyramid Network (BiFPN) into the feature fusion module enabled cross-scale bidirectional crack feature flow,capturing multi-scale crack information without substantially increasing computational costs.Experimental validation demonstrates that YOLOv10-CGBN achieves 90.5% AP50 and 67.1% AP50-95 on our tunnel lining dataset,surpassing baseline YOLOv10 by 5.5% and 4.4% respectively.The optimized network maintains 154.4 FPS inference speed with only 2.42M parameters,showing superior real-time performance compared to existing single-stage detectors.The results show that the method effectively balances accuracy and efficiency in practical tunnel inspection applications.

       

    /

    返回文章
    返回