高级搜索

    基于长标距FBG传感系统的管道监测及数据恢复研究

    Research on Pipeline Monitoring and Data Recovery Based on Long-Gauge FBG Sensor Systems

    • 摘要: 利用长标距光纤光栅(LG-FBG)传感系统对管道进行监测,可准确评估其结构健康状况.然而,环境的复杂性可能导致监测数据丢失,从而使管道评估信息不够充分,降低了对潜在问题的早期预警能力.基于此,在管道工程中搭建了LG-FBG传感系统,并分析了监测数据丢失的可能性.随后,基于优化双向长短时记忆网络(Bi-LSTM)与生成对抗网络(GAN),捕捉可用数据与缺失数据之间的时空相关性,并分析了缺失时间占比及传感器缺失数量对模型恢复性能的影响.研究结果表明,当缺失时间占比低于18/24时,模型恢复效果略有下降,但整体性能仍较为稳定.然而,当缺失时间占比超过18/24时,模型恢复效果显著下降.为确保较高的恢复精度,建议将缺失时间占比控制在18/24以内.此外,在多个数据恢复任务中,结合饥饿游戏搜索优化的Bi-LSTM-GAN模型的性能评估指标表现最佳,可更为精准地捕捉可用数据与缺失数据的时空相关性.综上,通过结合LG-FBG传感系统与数据驱动方法,系统探讨了缺失数据恢复的有效性,为管道结构健康监测提供了更完整的定量评估信息.

       

      Abstract: The long-gauge fiber Bragg grating (LG-FBG) sensing system enables accurate assessment of pipeline structural health.However,environmental complexities may lead to data loss,resulting in incomplete pipeline evaluation and reduced early warning capabilities for potential issues.To address this,the present study deployed an LG-FBG sensing system in pipeline engineering and analyzed the likelihood of monitoring data loss.Subsequently,an optimized bidirectional long short-term memory network (Bi-LSTM) combined with a generative adversarial network (GAN) was employed to capture the spatiotemporal correlations between available and missing data.The study further examined the impact of missing time proportions and the number of missing sensors on model recovery performance.Results indicate that when the missing time proportion is below 18/24,the model’s recovery performance exhibits minor degradation but remains stable overall.However,when the missing time proportion exceeds 18/24,recovery performance declines significantly.To ensure high recovery accuracy,it is recommended to maintain the missing time proportion within 18/24.Additionally,among various data recovery tasks,the Bi-LSTM-GAN model optimized with hunger game search demonstrated the best performance in evaluation metrics,effectively capturing the spatiotemporal correlations between available and missing data.In conclusion,this study integrates the LG-FBG sensing system with data-driven methods to systematically investigate the effectiveness of missing data recovery,providing a more comprehensive quantitative assessment for pipeline structural health monitoring.

       

    /

    返回文章
    返回