高级搜索

    脆性破坏地质灾害智能监测预警研究与展望

    Research and Prospects on Intelligent Monitoring and Early Warning of Brittle Failure-Type Geological Hazard

    • 摘要: 随着脆性破坏地质灾害发生频率的增加,其预警难度逐渐凸显.不同于塑性破坏,脆性破坏灾害在破坏前缺乏明显的塑性应变,难以精准识别.研究表明,脆性破坏是内、外动力耦合作用的结果,其破坏机理分析需依赖更全面的数据支撑;其中,岩桥损伤是脆性破坏发生的核心因素.因此,预警的关键在于识别结构面的损伤敏感性指标,并结合多领域敏感性因子,构建基于分离破坏前兆识别的智能预警模型.当前,脆性破坏地质灾害的预警技术仍受限于算力不足、多模型协同难度大及数据缺乏等问题.随着云边协同计算、人工智能及多源数据融合技术的发展,有望提升数据处理效率,并构建多参数同步采集与智能化多模型集成监测系统,优化脆性地灾数据库,推动监测预警模型的数据同化与自适应更新,形成系统化的灾害监测与预警体系.探讨当前研究进展及潜在技术瓶颈,并提出应对策略,以期为脆性破坏地质灾害的防控提供理论与技术支持.

       

      Abstract: The increasing frequency of brittle failure-type geological hazards presents significant challenges for early warning.Unlike plastic failure,brittle failure lacks significant plastic strain before rupture,making it difficult to identify precursors.Studies indicate that rock bridge damage is a key factor in brittle failure.Identifying sensitive indicators of rock bridge damage and integrating multi-domain sensitivity factors can support the development of an intelligent early-warning model based on precursor recognition.Currently,the early-warning technology for brittle failure-type geological hazards is constrained by limited computing power,difficulties in multi-model collaboration,and insufficient data.Advances in cloud-edge collaboration,artificial intelligence,and multi-source data fusion technologies are expected to enhance data processing efficiency.A multi-parameter synchronous acquisition and intelligent multi-model integrated monitoring system can be established to optimize brittle failure geological hazard databases,facilitate data assimilation,and enable self-adaptive updates of monitoring and warning models.This study discusses recent research progress,identifies key technological bottlenecks,and proposes strategies to support the prevention and mitigation of brittle failure-type geological hazards.

       

    /

    返回文章
    返回