高级搜索

    基于深度学习的TBM运行参数预测及小样本扩充研究

    Deep Learning-Based Prediction of TBM Operating Parameters and Small Sample Expansion Research

    • 摘要: 为解决全断面隧道掘进机(TBM)运行参数预测精度不足及小样本数据困境,构建了融合深度学习与生成式对抗网络(GAN)的联合预测框架.以吉林中部城市引松供水工程TBM施工数据为研究对象,通过建立二值判别函数筛选有效数据段,结合箱型图法剔除离群值、Z-Score归一化处理多源异构数据;建立深度神经网络(DNN)、长短期记忆网络(LSTM)、卷积神经网络(CNN)3类预测模型,采用随机梯度下降(SGD)、自适应学习率AdaGrad、Adam算法优化网络参数,搭配ReLU、Leaky ReLU等激活函数提升非线性拟合能力;引入GAN生成高质量扩充数据,与深度学习模型耦合形成GAN-DNN、GAN-LSTM、GAN-CNN预测架构.对比分析显示,GAN-CNN模型在预测精度(RMSE=0.041,R2=0.912)和训练效率上优势显著.工程验证,该方法在吉林引松工程和青岛地铁工程中有效提升掘进效率18%~22%,为复杂地质条件下TBM施工参数优化提供可靠的智能化解决方案.

       

      Abstract: To address the issues of insufficient prediction accuracy of tunnel boring machine (TBM) operation parameters and small-sample data dilemma,a joint prediction framework integrating deep learning and generative adversarial network (GAN) is proposed.Taking the TBM construction data of the Jilin Central City Water Diversion from Songhua River Project as the object,a binary discriminant function screened valid data segments.The box-plot method removed out-liers,and multi-source heterogeneous data were normalized by Z-Score.Three prediction models—deep neural network (DNN),long short-term memory network (LSTM),and convolutional neural network (CNN)—were constructed.Network parameters were optimized using stochastic gradient descent (SGD),adaptive learning rate AdaGrad,and Adam algorithms,with activation functions like ReLU and Leaky ReLU enhancing non-linear fitting.GAN-generated high-quality augmented data coupled with deep-learning models to form GAN-DNN,GAN-LSTM,and GAN-CNN architectures.Comparative analysis reveals that the GAN-CNN model excels in prediction accuracy (RMSE of 0.041,R-squared of 0.912) and training efficiency.Engineering verification in the Jilin Water Diversion and Qingdao Metro Projects shows an 18%~22% increase in tunneling efficiency,offering a reliable intelligent solution for TBM parameter optimization under complex geology.

       

    /

    返回文章
    返回