高级搜索

    基于Transformer-LSTM的泥水平衡盾构姿态预测研究

    Research on Attitude Prediction of Slurry Balance Shield Machine Based on Transformer LSTM

    • 摘要: 盾构机掘进姿态的控制对隧道施工质量与周围环境的影响至关重要,当盾构机姿态控制不足时可能会导致一系列工程问题.现阶段对盾构机姿态的控制主要依赖于工程经验,暂无精确可行的方法协助校核盾构机的掘进姿态.针对该问题,提出一种基于Transformer-LSTM组合模型的泥水平衡盾构姿态预测方法,结合实际工程中泥水平衡盾构机的26种不同施工参数,采用相关性分析和层次聚类的方法来筛选模型输入特征,对盾构机的掘进姿态进行了预测.研究结果表明:基于Transformer-LSTM组合模型的泥水平衡盾构掘进姿态垂直偏差和水平偏差的MAE分别为0.054和0.061,RMSE分别为0.064和0.085,R2分别为0.883和0.913;基于Transformer-LSTM组合模型的预测结果明显优于基于LSTM模型的预测结果,可以用来协助校核盾构机的掘进姿态.

       

      Abstract: The control of the excavation posture of shield tunneling machines is critical to ensuring both tunnel construction quality and the protection of the surrounding environment.Inadequate posture control can result in a range of engineering challenges.Currently,posture control in shield tunneling is largely based on engineering experience,with no precise or feasible method available for verifying the excavation posture.To address this gap,this study proposes a method for predicting the attitude of slurry balance shield machines using a combined Transformer- LSTM model.By incorporating 26 different construction parameters from practical engineering applications,the study employs correlation analysis and hierarchical clustering to select input features for the model,which is then used to predict the excavation posture of the shield machine.The results demonstrate that the Mean Absolute Error (MAE) for vertical and horizontal deviations in excavation posture,as predicted by the Transformer-LSTM model,are 0.054 and 0.061,respectively,while the Root Mean Squared Error (RMSE) values are 0.064 and 0.085.Additionally,the correlation coefficients are 0.883 and 0.913,respectively.These findings show that the Transformer-LSTM model significantly outperforms the standalone LSTM model,making it a promising tool for assisting in the verification of shield machine excavation posture.

       

    /

    返回文章
    返回