高级搜索

    半监督学习的盾构掘进围岩等级分类方法

    Rock Mass Classification for Shield Tunneling Based on Semi-Supervised Learning

    • 摘要: 围岩等级分类对全断面隧道掘进机(Tunnel Boring Machine,TBM)的掘进性能具有重要影响.由于围岩分类测试的经济、时间和人力成本较高,沿掘进方向的实测数据点稀疏,数据量十分有限.基于TBM掘进过程中产生的大量监测数据,数据驱动模型被引入围岩分类研究.然而,现有研究大多利用有限的围岩实测数据与经验插值数据构建模型,可能导致模型基于与实际围岩情况不符的标签数据进行训练和测试,从而降低分类结果的可信度.针对这一问题,提出了一种基于半监督学习的围岩等级分类方法,该方法充分利用有限的实测围岩等级数据(有标签数据)以及掘进过程中采集的大量不直接反映围岩信息的掘进参数(无标签数据).该方法通过利用有限的标签数据预训练模型,随后逐步为无标签数据赋予伪标签进行迭代自训练,从而有效提升了模型的围岩分类性能.在模型评估方面,除了采用准确率、精确率、召回率和F1分数等指标评估模型在有标签数据上的表现外,还引入扭矩贯入指标(Torque Penetration Index,TPI)来验证模型在无标签数据上的分类准确性.依托内蒙古东北部的引绰济辽工程对所提方法进行验证.结果表明,在围岩等级分类任务中,所提方法在准确率和扭矩贯入指标TPI上均优于监督模型和无监督模型;采用稳定段掘进参数作为特征可提高模型的预测准确率;模型在识别围岩等级的同时,可提供分类结果的置信度评估.

       

      Abstract: Rock mass classification has a crucial impact on the performance of full-face tunnel boring machines (TBM).Due to high testing cost,rock mass data are sparse along tunnel alignments.Leveraging the extensive monitoring data collected during TBM excavation processes,data-driven models have been introduced to address rock classification challenges.Most existing models rely on sparse labeled data and empirical interpolations,often leading to training and evaluation based on labels inconsistent with actual rock conditions.A semi-supervised learning-based approach for rock mass classification is proposed,utilizing limited labeled data and abundant unlabeled tunneling parameters.The model is first pre-trained using the limited labeled data and then iteratively self-trained by gradually assigning pseudo-labels to the unlabeled data.Four evaluation metrics (accuracy,precision,recall,and F1 score) are used to assess the model performance on the labeled data,and the torque penetration index (TPI) is employed to verify model classification accuracy on the unlabeled data.The proposed method is illustrated using the Yinchuan Jiliao project in northeastern Inner Mongolia.The results show that under the specified dataset and testing conditions,the proposed method outperforms the supervised and unsupervised models in terms of accuracy and TPI.Using tunneling data from stable segments improves model accuracy.The model also outputs classification confidence,enhancing reliability.

       

    /

    返回文章
    返回