高级搜索

    基于上下文动态信息和多尺度注意力的岩心完整性智能评价算法

    An Intelligent Evaluation Algorithm for Rock Core Integrity Based on Contextual Dynamic Information and Multi-scale Attention

    • 摘要: 为解决传统岩心完整性人工评价方法效率低下的问题,基于YOLOv8网络框架,提出了一种结合上下文动态信息和多尺度注意力的岩心完整性智能评价算法,称其为YOLOv8-CMR.在YOLOv8-CMR中,首先,融合ODConv和Transformer构建了一种基于上下文增强的动态特征提取模块,ODConv通过对卷积核参数的全方位动态调整,实现对复杂多变的岩心细节特征的精准提取,Transformer通过对深部特征层进行分析提取图像的全局上下文信息,提升网络的抗干扰能力.其次,设计了一种基于多尺度注意力的特征增强模块,通过对空洞空间卷积池化金字塔中不同尺度的特征层分别赋予权重,提升了网络对于不同尺度岩心的特征提取能力.然后,通过特征解码模块对融合特征层进行解码,输出岩心的目标检测结果.最后,基于检测结果对岩体RQD进行自动计算并预测岩心完整性等级.实验结果表明:YOLOv8-CMR的岩心识别精度指标F1和mPA分别为93.9%和95.6%,均优于DETR、Faster-RCNN、EfficientDet和YOLOv8这4种常用识别算法.此外,RQD预测结果与人工测量的误差仅为2.05%,岩心完整性等级预测准确率为93.3%,能够高精度地完成岩心完整性智能评价任务.

       

      Abstract: Aiming at addressing the issue of serious inefficiency in the traditional manual evaluation methods for rock core integrity,an intelligent rock core integrity evaluation algorithm,named YOLOv8-CMR (YOLOv8 enhanced by Contextual dynamic information and Multi-scale attention for Rock core integrity prediction),is proposed.In YOLOv8-CMR,a dynamic feature extraction module based on context enhancement is firstly constructed by fusing ODConv (Omni-Dimensional Dynamic Convolution) and Transformer.ODConv is used to realize accurate extraction of complex and variable core detail features by all-round dynamic adjustment of convolutional kernel parameters,and Transformer is used to extract the global context information by analyzing the deep feature layer to enhance the network’s anti-interference ability.Then,a multi-scale attention-based feature enhancement module is designed to improve the multi-scale feature extraction capability by assigning weights to the feature layers of different scales in Atrous Spatial Pyramid Pooling.After that,the fused feature layer is decoded by the feature decoding module to output the rock core’s detection results.Finally,Rock Quality Designation (RQD) is automatically calculated and the rock core integrity level is predicted according to the detection results.The experimental results show that F1 and mPA of YOLOv8-CMR are 93.9% and 95.6%,respectively,which are superior to the four commonly used recognition algorithms including DETR,Faster-RCNN,EfficientDet,and YOLOv8.In addition,the RQD prediction result of YOLOv8-CMR is 2.08% error from manual measurement,and the prediction accuracy of rock core integrity grade is 93.3%,which is suitable for intelligent evaluation of rock core integrity.

       

    /

    返回文章
    返回