高级搜索

    基于少量标注样本的TBM围岩分级半监督学习方法

    Semi-Supervised Surrounding Rock Classification Method for TBM Tunneling with Limited Labeled Samples

    • 摘要: 在隧道掘进机(TBM)施工过程中,围岩等级的实时、准确评价对隧道工程至关重要.利用TBM掘进参数进行围岩等级判别并应用于工程实践具有较高的可行性.近年来,基于机器学习的TBM掘进参数反分析围岩等级方法得到广泛应用,但传统监督学习方法受样本标签准确性的影响较大,在处理含有噪声标签的数据集时,其精度很难进一步提高.针对这一问题,提出一种自适应阈值置信度筛选策略,用于识别数据集中的噪声标签,并结合半监督学习的平均教师模型,构建了一种自适应置信度阈值平均教师模型(Adaptive Confidence Threshold Mean Teacher Model,ACT-MT).该模型通过提升无标签样本的伪标签质量,确保各类别伪标签均具有较高置信度,从而有效抑制噪声干扰,提高模型在少量标注样本集中的学习精度及计算效率.在实际工程案例的应用中,当有标签数据占比小于50%时,ACT-MT模型比MT模型的精度下降更小,并能均衡各类别数据的分级效果.此外,通过在TBM掘进数据集中人为添加1%~30%的噪声标签,对比多种机器学习分类器的性能,结果表明改进的ACT-MT模型的分类精度较高,且随噪声标签添加比例的提高依然可以保持分类精度,验证了ACT-MT模型对噪声标签数据集的强鲁棒性.该模型可显著降低人工标注成本.

       

      Abstract: Accurate and real-time classification of surrounding rock during TBM tunneling is essential for construction safety and efficiency.TBM operational parameters offer feasible input for surrounding rock classification,but the accuracy of traditional supervised machine learning models declines when training data contain noisy labels.To address this limitation,an Adaptive Confidence Threshold Mean Teacher model (ACT-MT) is proposed by integrating a confidence-based noise-label filtering strategy with a semi-supervised Mean Teacher framework.This method identifies mislabeled data using adaptive confidence thresholds,ensuring high-confidence pseudo-labels across all classes.The approach improves classification accuracy and computational efficiency when only a small portion of labeled data is available.Applied to a real-world TBM tunneling project,ACT-MT maintains higher accuracy than the standard Mean Teacher model as the proportion of labeled data decreases below 50%.When 1%~30% label noise is artificially introduced into the dataset,ACT-MT consistently outperforms conventional classifiers,preserving accuracy across noise levels.The model effectively mitigates the impact of label noise and reduces the need for extensive manual annotation.

       

    /

    返回文章
    返回